Georgia Department of Education

Common Misconceptions

Students use whole-number names when counting fractional parts on a number line. The fraction name should be used instead. For example, if two-fourths is represented on the line plot three times, then there would be six-fourths.

MGSE4.MD. 5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:

This standard brings up a connection between angles and circular measurement (360 degrees).
a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.

The diagram below will help students understand that an angle measurement is not related to an area since the area between the 2 rays is different for both circles yet the angle measure is the same.

b. An angle that turns through \mathbf{n} one-degree angles is said to have an angle measure of \mathbf{n} degrees.

This standard calls for students to explore an angle as a series of "one-degree turns." A water sprinkler rotates onedegree at each interval. If the sprinkler rotates a total of 100 degrees, how many one-degree turns has the sprinkler made?

MGSE4.MD. 6 Measure angles in whole number degrees using a protractor. Sketch angles of specified measure.
Before students begin measuring angles with protractors, they need to have some experiences with benchmark angles. They transfer their understanding that a 360 rotation about a point makes a complete circle to recognize and sketch angles that measure approximately 900 and 180 . They extend this understanding and recognize and sketch angles that measure approximately 450 and 30°. They use appropriate terminology (acute, right, and obtuse) to describe angles and rays (perpendicular).

Students should measure angles and sketch angles.

Georgia Department of Education

MGSE4.MD. 7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

This standard addresses the idea of decomposing (breaking apart) an angle into smaller parts.

Example:
A lawn water sprinkler rotates 65 degrees and then pauses. It then rotates an additional 25 degrees. What is the total degree of the water sprinkler rotation? To cover a full 360 degrees how many times will the water sprinkler need to be moved?

If the water sprinkler rotates a total of 25 degrees then pauses, how many 25 degree cycles will it go through for the rotation to reach at least 90 degrees?

Example:
If the two rays are perpendicular, what is the value of m ?

Example:
Joey knows that when a clock's hands are exactly on 12 and 1 , the angle formed by the clock's hands measures 30 . What is the measure of the angle formed when a clock's hands are exactly on the 12 and 4 ?

Common Misconceptions

Students are confused as to which number to use when determining the measure of an angle using a protractor because most protractors have a double set of numbers. Students should decide first if the angle appears to be an angle that is less than the measure of a right angle $\left(90^{\circ}\right)$ or greater than the measure of a right angle $\left(90^{\circ}\right)$. If the angle appears to be less than 90°, it is an acute angle and its measure ranges from 0° to 89°. If the angle appears to be an angle that is greater than 90°, it is an obtuse angle and its measures range from 91° to 179°. Ask questions about the appearance of the angle to help students in deciding which number to use.

MGSE4.MD. 8 Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

