|  | Monday | Mon. Workspace | Tuesday | Tues. Workspace |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Create a pattern that has 5 terms. The first term is 4 and the rule is x 6 . |  | Compare using <, =, or >. |  |
| 2 | Kimara brought 4 boxes of crayons to school. Each box held 24 crayons. How many crayons did she bring to school? |  | Find the product. $57 \times 43=$ <br> a. 2,358 <br> b. 2,451 <br> c. 2,500 <br> d. 2,551 |  |
| 3 | $645 \div 5=$ <br> a. 124 r 2 <br> b. 125 r 3 <br> c. 129 <br> d. 132 |  | List the factors of 12 . <br> Is 12 prime or composite? | List the factors of 23 . <br> Is 23 prime or composite? |
| 4 | Compare using <, =, or >. $\begin{aligned} & \frac{4}{10}-\frac{2}{5} \\ & \frac{3}{5}-\frac{3}{4} \end{aligned}$ | (Draw a model or use common denominators.) | Estimate the product. $81 \times 38=$ |  |
| 5 | Area: <br> Perimeter: |  | An author sold 370 books at the book fair. If there are 10 books in a case, how many cases of books did the author sell? |  |

Mr. Parker has 982 pounds of grain. He feeds 240 pounds to his pigs and 460 to his cows. How much grain does he have left? Explain your thinking.

First, I $\qquad$

Then, I $\qquad$

|  | Wednesday | Wed. Workspace | Thursday | Thurs. Workspace |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Write 2 equivalent fractions to: $\frac{1}{2}$ |  | Write this number in expanded form. $293,805$ |  |
| 2 | Round 78,965 to the nearest thousand. | a. 70,000 <br> b. 77,000 <br> c. 78,000 <br> d. 79,000 | $700,000-234,987=$ |  |
| 3 | Bradley collected 936 seashells. He organized the shells in 4 different groups. If $\mathbf{S}$ represents the number of shells in each group, solve for $\mathbf{S}$. |  | Which comparison sentence best represents the equation? $8 \times 4=32$ | A. 8 more than 4 is 32 . <br> B. 4 is 8 times as many as 32 . <br> C. 8 is 4 times as many as 32 . <br> D. 32 is 8 times as many as 4 . |
| 4 | Decompose $\frac{7}{10}$ two different ways. |  | What number is 10 times greater than 25,458 ? |  |
| 5 | Show $\frac{6}{8}$ as a sum of unit fractions. |  | There were 6 children eating some pizza. If each child ate $\frac{1}{2}$ of a pizza, how many total pizzas were eaten? *Hint: Shade in the fraction model to help you solve the problem. |  |

Peter has four horses. Each one eats 4 pounds of oats, twice a day. How many pounds of oats does he need to feed his horses for 3 days? Explain your thinking.

First, I $\qquad$

Then, I $\qquad$

